The Size of the Smallest Strong Critical Set in a Latin Square

نویسندگان

  • John A. Bate
  • G. H. John van Rees
چکیده

A critical set in a latin square is a set of entries in a latin square which can be embedded in only one latin square. Also, if any element of the critical set is deleted, the remaining set can be embedded in more than one latin square. A critical set is strong if the embedding latin square is particularly easy to find because the remaining squares of the latin square are " forced " one at a time. A semi-strong critical set is a generalization of a strong critical set. It is proved that the size of the smallest strong or semi-strong critical set of a latin square of order n is n 2 /4. An example of a critical set that is not strong or semi-strong is also displayed. It is also proved that the smallest critical set of a latin square of order 6 is 9.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new bound on the size of the largest 2-critical set in a latin square

A critical set is a partial latin square that has a unique completion to a latin square of the same order, and is minimal in this property. If P is a critical set in a latin square L, then each element of P must be contained in a latin trade Q in L such that |P ∩ Q| = 1. In the case where each element of P is contained in an intercalate (latin trade of size 4) Q such that |P∩Q| = 1 we say that ...

متن کامل

On the spectrum of critical sets in latin squares of order 2

Suppose that L is a latin square of order m and P ⊆ L is a partial latin square. If L is the only latin square of order m which contains P , and no proper subset of P has this property, then P is a critical set of L. The critical set spectrum problem is to determine, for a given m, the set of integers t for which there exists a latin square of order m with a critical set of size t. We outline a...

متن کامل

Minimal and near-minimal critical sets in back-circulant latin squares

A critical set in a latin square is a subset of its elements with the following properties: 1) No other latin square exists which also contains that subset. 2) No element may be deleted without destroying property 1. Let scs(n) denote the smallest possible cardinality of a critical set in an n × n latin square. It is conjectured that scs(n) = n/4 , and that only the back-circulant latin square ...

متن کامل

On the size of the minimum critical set of a Latin square

A critical set in an n× n array is a set C of given entries, such that there exists a unique extension of C to an n× n Latin square and no proper subset of C has this property. For a Latin square L, scs(L) denotes the size of the smallest critical set of L, and scs(n) is the minimum of scs(L) over all Latin squares L of order n. We find an upper bound for the number of partial Latin squares of ...

متن کامل

More greedy defining sets in Latin squares

A Greedy Defining Set is a set of entries in a Latin Square with the property that when the square is systematically filled in with a greedy algorithm, the greedy algorithm succeeds. Let g(n) be the smallest defining set for any Latin Square of order n. We give theorems on the upper bounds of gn and a table listing upper bounds of gn for small values of n. For a circulant Latin square, we find ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Ars Comb.

دوره 53  شماره 

صفحات  -

تاریخ انتشار 1999